Exercise 1

Prove the following:

$$
\int_{0}^{x} \int_{0}^{x_{1}}(x-t)^{3} u\left(x_{1}\right) d t d x_{1}=\frac{1}{4} \int_{0}^{x}(x-t)^{4} u(t) d t
$$

[TYPO: The integrand should be $\left(x_{1}-t\right)^{3} u(t)$.]

Solution

From Right to Left

Let

$$
G(x)=\frac{1}{4} \int_{0}^{x}(x-t)^{4} u(t) d t .
$$

Note that $G(0)=0$. Differentiate both sides with respect to x and use the Leibnitz integration rule.

$$
\begin{aligned}
G^{\prime}(x) & =\frac{1}{4} \frac{d}{d x} \int_{0}^{x}(x-t)^{4} u(t) d t \\
& =\frac{1}{4} \int_{0}^{x} \frac{\partial}{\partial x}(x-t)^{4} u(t) d t+\frac{1}{4}(0)^{4} u(x) \cdot 1-\frac{1}{4} x^{4} u(0) \cdot 0 \\
& =\int_{0}^{x}(x-t)^{3} u(t) d t
\end{aligned}
$$

Now integrate both sides with respect to x.

$$
G(x)=\int^{x} \int_{0}^{x_{1}}\left(x_{1}-t\right)^{3} u(t) d t d x_{1}+C
$$

Set the constant of integration and the lower limit of integration to 0 in order to satisfy $G(0)=0$.

$$
G(x)=\int_{0}^{x} \int_{0}^{x_{1}}\left(x_{1}-t\right)^{3} u(t) d t d x_{1}
$$

Therefore,

$$
\int_{0}^{x} \int_{0}^{x_{1}}\left(x_{1}-t\right)^{3} u(t) d t d x_{1}=\frac{1}{4} \int_{0}^{x}(x-t)^{4} u(t) d t
$$

From Left to Right

$$
\int_{0}^{x} \int_{0}^{x_{1}}\left(x_{1}-t\right)^{3} u(t) d t d x_{1}
$$

In order to evaluate this double integral, it's necessary to switch the order of integration because $u(t)$ is not given.

Figure 1: The current mode of integration in the $t x_{1}$-plane is shown on the left. This domain will be integrated over as shown on the right to simplify the integral.

$$
\begin{aligned}
\int_{0}^{x} \int_{0}^{x_{1}}\left(x_{1}-t\right)^{3} u(t) d t d x_{1} & =\int_{0}^{x} \int_{t}^{x}\left(x_{1}-t\right)^{3} u(t) d x_{1} d t \\
& =\left.\int_{0}^{x} \frac{\left(x_{1}-t\right)^{4}}{4}\right|_{t} ^{x} u(t) d t \\
& =\int_{0}^{x}\left[\frac{(x-t)^{4}}{4}-\frac{0^{4}}{4}\right] u(t) d t \\
& =\int_{0}^{x} \frac{(x-t)^{4}}{4} u(t) d t
\end{aligned}
$$

Therefore,

$$
\int_{0}^{x} \int_{0}^{x_{1}}\left(x_{1}-t\right)^{3} u(t) d t d x_{1}=\frac{1}{4} \int_{0}^{x}(x-t)^{4} u(t) d t
$$

